AISYS ALTAIR Series
Framegrabber

Version of Document and OVK Framework : 20060227
All rights were reserved by AISYS Vision Corporation 2001~2006

http://www.aisysvision.com

Designed and Made in Taiwan

Table of Contents

Part I . AISYS ALTAIR Series Framegrabber Hardware Installation
Chapter 1 Hardware Installation

Lo PrOCEAUNES . ..ttt e e e e e e e e e e e e e e

PartII. AISYS ALTAIR Series Framegrabber
Software and Device Driver Installation

Chapter 1 Software Installation ..o,

1-1 Procedures

Chapter 2 Device Driver Installation.............coocoiiiiii e,

2-1 Procedures

PartIl. AISYS ALTAIR U Series Framegrabber Programming
MANUAL ...

Chapter 1 IntroducCtion.......c.cooiii i,
1-1 AISYS Vision Framework : The Rapid Prototyping and Developing

Chapter 2 Integration with Vision Framework
2-1 QUICK SEAIT. ..ottt it e e et e e e e e e e e e e e e
2-2 Hide The Toolbar

Chapter 3 User Interface of Vision Framework
-1 State Of ALTAIR. ... e e e e e e e e e

3-2 ALTAIR COoNfIQUIALION. ... e ettt e e e e e e e eeee e
3-3 Live Image / Freeze Image / Snap Shot

0 L@ I @0 oo 1 - 11 0] o

3-5Z00M IN T ZOOM OUL... .ttt et it e e e e e e e e e e e e e ae e e ens
3-6 Load Image File / Save as Image File

Chapter 4 Programming Model of Vision Framework
2t I o Yo [Td 1 o

4-2 Programming MOdEl..........oooii

Chapter 5 Introduction to RS232 Configuration.................cooeviiinne e,

5-1 Introduction

o2 I =Y o = o o 31

5-3 COM POIt StAte... ...t e et e e 31
5-4 Commands Management..........cc.ooeiierire e iiiiieiieiieieene e e e e eennen a3
5-5 Messages from Com PoOrt.o 31
5-6 Commands from COM POIT..........itiiiiii e e e e 31
S A I T T = 1Y/ o = 32
5-8 Releated Properties / Methods / EVENES.........c.oovvi i iii i 32
Chapter 6 Programming Interface of Vision Framework 33
LG R 0T [T 1T] o 1P 33

6-2 Programming Interface.............cooooiiiiii i 020033

Chapter 7 Another way of Integration : Stand Alone Component 50
-1 QUICK Starti ittt e et e e ettt e ete e eeererenneneeneeeea D0
7-2 Programming MOdel... ... e e s 57
7-3 Programming Interface of AxAltair Component.............c.ccooiiiiiiiiieinnenns 59
7-4 Programming Interface of AxCanvas Component...........cccccvvvevnevnn v vennnn, 63

PART |
AISYS ALTAIR Series
Framegrabber
Hardware Installation

ALTAIR SERIES

Chapter 1 Hardware Installation
1-1 Procedures

1. Turn on the power of computer, if autorun of CD in not enabled, execute the
AISYSInstallShell.exe in the CD, choose AISYS OVK Framework Lite,
follow the instructions the setup suite prompts and finish the installation
procedures.

2. Switch-off computer and all peripheral devices connected to it (monitor,
printer ...etc).

3. Discharge any electricity that could be accumulated on your body. You can
achieve this by touching with bare hand and unpainted metal part of the
enclosure of your computer. Make sure that the computer is linked to the AC
mains outlet with proper earth connection.

4. Disconnect all cables from your computer, including AC power.

5. Open the computer enclosure to gain access to the PCI slots according to the
manufacturer instructions.

6. Locate an available PCI slot and remove the blank bracket associated to its
location.

7. Unwrap the AISYS ALTAIR, take the board and hold it carefully. Avoid any
contact of the board with unnecessary items including your clothes.

8. Gently insert the board in the targeted PCI slot, taking care of pushing it fully
down. If you experience some resistance, remove the board and repeat the
operation keeping caution for a perfect mechanical alignment of board relative
to slot. Ensure the lower part of the bracket is inserting into the corresponding
enclosure fastening.

9. Secure the board with the screw.

10. Close the computer enclosure according to the manufacturer’s instructions

PART I
AISYS ALTAIR Series
Framegrabber Software
and Device Driver
Installation

ALTAIR SERIES

Chapter 1 Software Installation

1-1 Procedures

1. Insert “AISYS Solution CD” and follow the instructions the auto-run
application prompts or run the setup utility “setup.exe’ directly in root
directory in the CD to start the installation procedures as shown in Figure 1.

‘i5! AISYS Solutions - InstallShield Wizard <

ome to the InstallShield Wizard for AISYS
ons

kallshigld(R) wizard will install AISYS Solukions on wour
er, To continue, click Mext,

3 This program is protected by copyright law and
ional treaties,

< Barck [Dext> [Cancel

Figure 1.

ALTAIR SERIES

2. Enter informations of user and organization and press the button “Next” to
continue the procedures as shown in Figure 2.

&

‘#5! AISYS Solutions - InstallShield Wizard ﬁ

Customer Information
Please enter your information, O AIS ‘ S

User Marne:
IJEFFI":.-' Z.T. Lee

Organization:

IP.IS\"S Vision Corporation

Install this application For:

{(*) Anyone who uses this computer {all users)

{3 Only For me (Jeffry C.T. Lee)

InstallShield

[< Back][_mext =] [Cancel]

Figure 2.
3. Change the install destination of necessary and press the button “Next” to
continue the procedures as shown in Figure 3.

‘#5! AISYS Solutions - InstallShield Wizard ﬁ

Destination Folder

Click Mext bo install bo this Folder, or click Change ko install ko a {j" 44IS ‘ S

G Install AISYS Solutions to:
Z:\Program Files\AI5YS Vision Corporationi o),

InstallShield

[< Back]L Mext = ,| [Zancel

Figure 3.

ALTAIR SERIES

4. Choose the setuo type and press the button “Next” to continue the procedures as
shown in Figure 4.

‘#5! AISYS Solutions - InstallShield Wizard ﬁ

Setup Type

Choose the setup bype that best suits your needs, O AIS ‘ S

Plzase select a setup tvpe.

&l program features will be installed. (Requires the most disk,
space,)

hoaose which program Features you want inskalled and where they
will be installed, Recommended for advanced users,

InstallShield

[< Back ” Mk =] [Cancel]

Figure 4.
5. Press the button “Install” to start the installation as shown in Figure 5.

‘#5! AISYS Solutions - InstallShield Wizard ﬁ

Ready to Install the Program

The wizard is ready to begin installation, O AIS YS

Click Install to begin the installation.

If wou wank ko review or change any of your installation settings, click Back. Click Cancel to
exit the wizard,

InstallShield

[< Back]L Install d [Cancel

Figure 5.

ALTAIR SERIES

6. Wait for the installation process finished as shown in Figure 6.

N

‘{5 AISYS Solutions - InstallShield Wizard =] <

Installing AISYS Solutions

The program features you selected are being installed, O AIS ‘ S

Plzase wait while the InstallShield Wizard installs AISYS Solutions. This may
kake several minutes,

Skatus:

Copying new files

Liiiii 11111111111 1331111411}]

InstallShield

< Back Mext =

Figure 6.
7. Press the button “Finish” to finish the installation as shown in Figure 7.

!

‘#5! AISYS Solutions - InstallShield Wizard m

IShield Wizard Completed

tallshield Wizard has successfully installed AI5YS
=, Click Finish to exit the wizard,

< Back Zancel

Figure 7.

10

ALTAIR SERIES

Chapter 2 Device Driver Installation

2-1 Procedures

1. Turn on the power of computer again, and you will see the dialog from PNP
manager of Windows as shown in Figure 1.

Found Mew Hardware Wizard

Welcome to the Found New
Hardware Wizard
Windowes will zearch for curent and updated zoftware by

looking on your computer, on the hardware ingtallation CO, or on
the “wWindows pdate Web zite [with pour permission).

Bead our privacy policy

Can Windows connect ta Windows Update to search for
zoftware?

) Yes, this time only
{3 'es, now and every time | connect a device
{(®) Mo, nat this time

Click Mest to continue.

¢ Back I et >][Cancel]

Figure 1.
2. Check the option and press “Next” button as shown in Figure 1.

3. Check the option and press “Next” button to install driver for “AISYS ALTAIR”
as shown in Figure 2.

11

ALTAIR SERIES

Found Mew Hardware Wizard

Thiz wizard helps you install software for;

kultimedia Yideo Controller

r\) If your hardware came with an installation CD
22 or floppy disk, inzert it now.

What do you want the wizard to do?

) Install the software automatically [Fecommended)
{®) Inztall from a list or specific location [Advanced)

Click Mest to continue.

[< Back ” Mext =][Cancel]

Figure 2.
4. Check the option and press “Browse” button to introduce Windows the location
of ALTAIR driver files as shown in Figure 3 and Figure 4.

- =, 1

Found Mew Hardware Wizard

Please chooze your zearch and installation options.

(%) Search for the best driver in these locations.

Ilze the check boxes below to limit or expand the default zearch, which includez local
paths and removable media. The best driver found will be inztalled.

[] Search removable media [floppy, CO-ROM...]

Inzlude this location in the search:

|E:'\F‘rn:ngram Filezhdl SYSAOVE ARG river [v] [Browze

() Don't zearch. | will choose the driver ta install.

Choose thiz option to zelect the device driver from a list. *Windows does not guarantee that
the driver you chooze will be the best match for wour hardware.

[¢ Back ” M et >][Cancel

Figure 3.

12

ALTAIR SERIES

Browse For Folder w

Select the Falder that contains drivers For your hardware.

=) e Local Disk (T
|53 Documents and Settings
I Going3z2
I3 HySnapDy
= [C3) Program Files
I ACDSee3z
| Adobe
=5 Alsys
I APME
=5 ove
[AltairDriver
I3 Doc
I3 Examples M
[il i] [i]

To wiew any subfolders, click a plus sign above,

i

[Ok][Cancel]

Figure 4.

. Press “Next” button to install ALTAIR driver files as shown in Figure 5.

. Press “Continue Anyway” button to install ALTAIR driver files as shown in
Figure 6. Here, AISYS ALTAIR is installed complete.

. Because another dummy driver for “AISYS Component” need to be installed, a
new dialog from PNP manager of Windows will show again as shown in Figure
1.

. Follow the instructions mensioned above (from procedure 13 ~ procedure 16)
to install the dummy driver of “AISYS Component” to complete the in whole
procedures of driver installation. Now you can see two device records “AISYS
ALTAIR” and “AISYS Component” in device manager as shown in Figure 7.
Here, AISYS ALTAIR is installed successfully.

13

ALTAIR SERIES

Found Hew Hardware Wizard

Pleaze choose your search and installation options.

(%) Search for the best driver in theze locations.

I1ze the check boxes below ta limit or expand the default zearch, which includes local
pathz and removable media. The best driver found will be installed.

[] 5earch removable media [floppy, CO-ROM...|

[nzlude this lozation in the search:

|C:AProgram FileshAISYSS0VK AltaiDriver [v| [Browse

() Don't zearch. | will choose the driver ta install.

Choose thiz option to zelect the device driver from a list. *Windows does not guarantee that
thie driver you chooze will be the best match for wour hardware.

[< Back][fext >][Cancel

Figure 5.

Hardware Installation

' ': The zoftware pou are installing for this hardware:
L
&1575 ALTAIR

has not paszed Windows Loga besting ta werify ite campatibility
with Windows =P, [Tel me who this testing iz imporkank |

Continuing your installation of thiz zoftware may impair
or destabilize the correct operation of your spstem
either immediately or in the future. Microzoft strongly
recommends that you stop this installation now and
contact the hardware vendor for software that has
pazsed Windows Logo testing.

[Cantinue Anygwal] [STOR Installation

Figure 6.

14

Found MNew Hardware Wizard

Please wait while the wizard installs the software. ..

ALTAIR SERIES

@ A15Y'S Component

< Back

MHext =

Cancel

2 Device Manager

File Action Yiew Help

- = & =
=2 JEFF-RC

Lk DVDfCD-ROM drives
i IDE ATAJATARI controllers
El:ﬂ Irmaging devices

'--@i Kevboards

¢y Mice and other pointing devices
g Monitors

‘ Metwork adapters

- Ports (COM & LPT)

+- %% Processors

@é 251 and RAID controllers

'ag.. Sound, videa and game controllers

¢ iy Syskem devices
- Universal Serial Bus contraollers

Figure 7.

15

PART Il
AISYS ALTAIR Series
Framegrabber
Programming Manual

ALTAIR SERIES

Chapter 1 Introduction

1-1 AISYS Vision Framework : The Rapid Prototyping and Developing SDK

AISYS provides an easiest way called “Vision Framework” to access all the
hardware products designed by AISYS. A vision framework, which is a patented
software framework, helps users to develop vision system easily and rapidly.
Thanks to ActiveX architechture, vision framework dramatically reduces the most
parts of efforts that users should contribute that adopt traditional SDK. Even with
no programming codes at all, users can view the live image in 1 minute with the
help of the vision framework. By the way, vision framework is free of charge. See
the later sections for the details of software development.

1-2 Minimum System Requirement

To make ALTAIR series framegrabber operates smoothly, minimum system
capability is required. AISY'S suggests users to have the following minimum
system requirement to connect ALTAIR series gramegrabbers :

CPU P4 Celeron 1.6G or above.

DRAM DDR266 256MB or above.

HD Space 30MB for installing OVK Framework L.ite.

VGA Interface Independent VGA interface card with 8BMB RAM or

above is strongly suggested.

Operating System Microsoft Windows 2000 SP4 / Microsoft Windows
XP SP1 or later.

VGA Resolution 800x600@16bpp or above ; 1024x768@24bpp is
suggested for the best Ul appearance.

Table 1.

17

ALTAIR SERIES

Chapter 2 Integration with Vision Framework

Vision framework provides the most convenient and versatile way to integrate
AISYS hardware products with users’ vision system. Briefly speaking, vision
framework provides a solution to integrate vision system in a manner “Pick ~ Place
and Play”. Let us introduce a “Quick Start” to demonstrate how to get a
breakthrough to a vision system powered by vision framework. Before we start the
introduction, users should follow the instructions mensioned in part | ~ Il and be
sure that an ALTAIR series framegrabber is connected to your computer properly.

2-1 Quick Start
2-1-1 Pick
1. Start Microsoft Visual Basic version 6.0 or Visual C++ 6.0 compiler as
shown in Figure 1. (Upgrading Visual Basic or Visual C++ to service pack 5

or later is suggested). Here, we use Microsoft Visual Basic 6.0 as the reference
platform.

% Projectl - Microsoft ¥isual Basic [design] - [Form] (Form}]

59 File Edit View | Project Format Debug Eun Cuery Disgram Tool: Add-In: Window Help

"E*E'E|%ijji°§lmm | » -|%E’%’_ﬂfﬁ
v ndd Module - 3
Generel 40 Add Closs Module B=x

52 [abl g 444 User Contral
5] 444 Property Page
IO
= W EE E Add Teer Dacumest
gy 3 = Add WebClas

. Add DHTHML Page
B~ 4dd Microsoft UserConnection
Eﬂ 4434 File. .. Ctl+D
Eemove Fonml
P References

Components... Ctl+T

Project] Properties. .
T

Figure 1

18

ALTAIR SERIES

2. Choose menu Project — Components — Figure 1 — Check
AxAltairVisionFrameworkCtrl Library — OK Button as shown in
Figure 2.

Components ﬁ

Controls | Designers | Insertable Objects |

[]:-) videoSoft vsFlex3 Controls
[] Active Setup Control Library
[] AxAltairDrv Library

[] AxAltairUDrv Library -
[] AxAltairUVisionFramewarkCtrl Library T’i"
v AxAltairVisionFrameworkCirl Library = =
[] AxAudioLib 1.0 Type Library =
[AxAudioWaveformMatcherCirl Library S
[AxBrowse

[] AxCommCtrl Library

[] AxGammaGeneratorCir Library

[] AxDvkBase Library

[] AxOvkBlob Library M Browse... |

<] 1 | (2] [~ selected Items Only

— AxAltairVisionFramewarkCtrl Library
Location: C:\...\AxAltairvisionFrameworkCirl.ocx

ITI Cancel | Apply I

Figure 2
3. You can see the components in toolbox after finishing above procedures
that names "AxAltairVisionFramework", as shown in Figure 3.

% Project]l - Microsoft ¥isual Basic [design] -
B3 File Edit Wiew Project Format Debug Eun
[B-1-Flad| s =dH

x| m

Greneral | 3 Forml

[

ﬂﬂ;llg[:l

B3 eV isdnnPrarme work]

Figure 3

19

ALTAIR SERIES

4. Pick the component from the palette as shown in Figure 4.

% Project]l - Microsoft ¥isual Basic [design] - [Forml
53 File Edit Wiew Project Format Debug Ewn Quere D

“5'13'5|ﬁﬂ %Egﬁ|ﬂn|
EIE
(Heneral | B3 Forml

1~ & E =B
4 ;' =]
& ~ EE

Figure 4.
2-1-2 Place
Place the component onto the main form and drag it to adjust the dimension as
shown in Figure 5.

2-1-3 Play

1. Here, an integration between ALTAIR framegrabber and vision system is
finished.

2. Press the button “Start” of compiler to start the vision system and then press
the button “Acquisition Hardware Setup” to show the control panel of
hardware as shown Figure 5 and Figure 6.

20

ALTAIR SERIES

widl il il
LIYE FREEFE SHAP
Figure 5.

!cqlumtmn ﬂmvlra.re getup E
YideoFarmat—————) Color Format—————

& Full NTSC :iﬂ

........................ i r>VEiteylvel
" Full PAL
" Half NTSC
{24 Bits Full Color
I Half PAL
Create Channel [Nestroy Chanmnel

Figure 6.

21

ALTAIR SERIES

3. Select video and color format by clicking the appropriate radio buttons and
then press the button “Create Channel” to initialize the framegrabber as shown
in Figure 7.

-~

Acquizition Hardware Setup

—Wideo Fu:urmal— —Color Format———

"l
T
=
=
—
(]
)
LELL
uiu

........................ & Greylevel
" Full PAL
" Half NT5C

24 Bits Full Color
" Half PAL

Create [Create Channel Destroy Channel

Figure 7.
4. Press the button “LIVE” to make the framegrabber camera in “Live Image”
mode as shown in Figure 8.

rf.'il Forml Q @1

_.
(‘ = ']

' e

.‘ oS &l ol

LWE | FREEZE SHAP

88 ¢ k\ﬁm@

Figure 8.

22

ALTAIR SERIES

2-2 Hide The Toolbar
It is the simplest case that users integrate ALTAIR framegrabber with their
vision system even with no programming codes. In fact, users need to
customize vision framework by configuring associated properties / methods /
events. See the chapter 2~5 for more details about customizing vision
framework. For example, by configuring the property “ShowToolBar” of
vision framework as “FALSE”, vision framework hide the toolbar and shows
only the canvas region as shown in Figure 9. Of course, the functions
provided by toolbar can also be accessed by properties / methods / events.

'S Formt mEx]

Figure 9.

23

ALTAIR SERIES

Chapter 3 User Interface of Vision Framework

Pick and place AxAltairVisionFramework component onto form, the
functions of the user interface are shown in Figure 10.

Load

Image File Visual Editing

Lo Load Mode

Configuration Recipe File

Freeze Image ROI
Management

Snap
Live Image Shot

Zoom In Save as Save as

Zoom Out = Image File Recipe File Langunage
ALTATR Selection

]
LI¥E FREEZE SHAP

State of ALTATR Eanvan

Figure 10
3-1 State of ALTAIR
Three states are identified by the LED-typed mark :
A. Red means “Channel is not created yet”;
B. Dark green means “Channel is created but idle”;
C. Light green means “Channel is created and active (Acquiring image)”.

3-2 ALTAIR Configuration
Press this button to present “Acquisition Hardware Setup” form which helps
user to configure ALTAIR easily as shown in Figure 7. Choose appropriate video
format / color format and press “Create Channel” button to create chanel. Of

24

ALTAIR SERIES

course, users can also create channel by programming method.

3-3 Live Image / Freeze Image / Snap Shot
These buttons controls image acquisition of ALTAIR framegrabber. Press “Live
Image” button to acquire intifite image sequence and after acquiring each image
vision framework (AxAltairVisionFramework component) invoke an
“OnSurfaceFilled” and an “OnCustomDraw” events sequencially to notify
users to do something about image processing and image drawing.

3-4 1/0 Configuration
Press this button to present “1/O States” form which helps user to configure
ALTAIR easily as shown in Figure 11 and Figure 12. Figure 11 shows 4 Input / 4
Output lines states and users can configure external trigger type. ALTAIR
framegrabber accept trigger from digital input lines and RS232 communication
port. Flexible trigger configurations make users realize 1/0 application without
any other hardware and software programming. Figure 12 shows RS232
configuration form and users can configure and connect RS232 ports by
“Select-and-Click™.

3-5 Zoom In/ Zoom Out
Press this button to present “Zoom In / Zoom Out” form which helps user to
zoom-in or zoom-out the image show in canvas as shown in Figure 13. Zoom
factors can be configured separately in X direction and Y direction which give
users the best viewpoint to render the image.

3-6 Load Image File / Save as Image File
Press this button to present “Open Image from File” form or “Save Image to
File”” form which help user to load image from image file or save current image
buffer to image file. The supported image formats include BMP / JPEG / TIFF.

25

ALTAIR SERIES

|

L0 States E

rLegend rTrigger Type————

{~ Rizing Edge
O Logic: High for lnput Port Q Lagic High for Qutput Port " Falling Edge

" Rising ar Falling

0 Logic Low for Input Port 0 Logic Low for Output Port ™ Others

& MULL

I /0 Portz State

Bit 00 Q Bit 04 Q Bit 02 g
[¥ Enable Dutput [¥ Enable Dutput ¥ Enable Outgut

[T Enable Hardware Trigaer | | [T Enable Hardware Trigaer || [T Enable Hardware Trigger

Bit 01 Q Bit 05 Q Bit 09 O
[¥ Enable Output [¥ Enable Output [¥ Eriable Dutput

[T Enable Hardware Trigger | [T Enable Hardware Trigger | [T Enable Hardware Trigger

Bit 02 Q Bit 05 Q Bit 10 g
[¥ Enable Dutput [¥ Enable Dutput ¥ Enable Outgut

[T Enable Hardware Trigaer | | [T Enable Hardware Trigaer || [T Enable Hardware Trigger

Bit 03 Q Bit 07 Q Bit 11 0
[¥ Enable Output [¥ Enable Output ¥ Erable Output

[T Enable Hardware Trigger | [T Enable Hardware Trigger | [T Enable Hardware Trigger

Figure 11

26

ALTAIR SERIES

"1/ States

rLegend rTrigger Type————]
i~ Rizing Edge

O Lagic: High for lbput Port @ Logic: High for Qutput Part ¢~ Falling Edge
" Rizing or Falling

Q Logic Low for Input Port Q Logic Lows for Dutput Part " Others

& MULL

TTLI A0 Page 1 | A5-232 communication port I

Q ‘ Cam Bort Channel State Commands and Messages from AS5232

Cormn Port |'| ;I

Baud Rate |E|EIZIIZI |

Create Com Channel | [estroy Cam Channel |

You cah inzert £ delete £ edit £ execute the [Carnmand Messages fram B5-232
caommand lizk by mouse and kepboard directy | Trigger Message = | @TRIGGER®

Inu:le:-:| Command | Title |
1] #=H = G0 HOME
1 rH v GO HOME
2 i = MOYE ABS
3 i v MOYE ABS
4
]

MR > MOVE REL
MR v MOVE REL

Command Paramsz = Custorn Cormmatd
Command Index = -1 Execute Commarid Send Custom Cammarnd
Figure 12
Zoom In f Zoom Out

Cuztomize zoom factor [’“2
Zoom factor in & direction 10000 | os
Zoom factor in ' direction I:I s

[= /% isotropic
Cancel |

Figure 13

27

ALTAIR SERIES

Chapter 4 Programming Model of Vision Framework

4-1 Introduction

The vision framework component (AxAltairVisionFramework) is a rapid
vision development framework dedicately designed to all the vision hardwares
from AISYS Vision Corporation. The vision framework component is not only
the easiest way to integrate AISYS vision hardware with user’s system but an
exquisite kernel of AISYS OVK Framework which is a powerful vision software
library. Through the help of the vision framework, the complexity of developing
vision system dramatically drops off. In addition, vision framework can also
reduce the complexity and effort of software maintain due to its patented structure.
No matter users adopt only hardware or whole solution from AISYS, vision
framework always meets users’ needs seamlessly and we hope technology and
products from AISYS brings users the all new experience in vision development.

4-2 Programming Model

Thanks to Microsoft ActiveX™ component model , all the software products
from AISYS adopts P-M-E (Property-Method-Event) programming model. The
acquisition flow is fully controlled by vision framework and vision framework will

assert two successive events “OnSurfaceFilled” ~ ”OnCustomDraw” to notify

user to do something like “Process the underlying image data” ~ “Draw the

underlying image or somewhat” whenever a frame buffer (or so-called surface)
is filled with new image data just acquired by framegrabber. The

“OnSurfaceFilled” ~ ”OnCustomDraw” two-event-operation-mode is the key

role in vision framework.

Prototype : void OnSurfaceFilled (long SurfaceHandle) ;

The event “OnSurfaceFilled” bring in a handle of surface which is a handle of
complex data structure that contains the image data just acquired. If user adopt
OVK Framework as the image processing library, one can directly pass the handle
to the vision library to complete the analysis tasks. If user adopt their own image
processing routines, one can invoke the method of vision framework “long
GetlmagePtr (long SurfaceHandle , int X, int Y)” by passing the handle of
surface as the first parameter and the starting position in the image as the second
and third parameters in the event “OnSurfaceFilled” to get the physical memory

28

ALTAIR SERIES

address the image stored in. For example,
void AxAltairVisionFramework::OnSurfaceFilled (long SurfaceHandle)

{
/I Fetch the physical address of image (Top-left corner)
pPhylmageAddr=(BYTE*)VisionFramework->GetlmagePtr (SurfaceHandle ,0,0) ;
/I Processing this image
OemProcessingRoutine (pPhylmageAddr) ;

}

Prototype : void OnCustomDraw (long hDC) ;
The event “OnCustomDraw’ bring five parameters in. The first parameter is a

Microsoft Windows HDC of canvas and one can draw any texts ~ lines ~ circles -

points even motifs by GDI APIs. Because vision framework draw the underlying
image onto canvas automatically, users do not need to draw the underlying image
in the event “OnCustomDraw”. Set the property “bool AutoDrawSurface “ as
FALSE to disable this automatic drawing facility. For example,
void AxAltairVisionFramework::OnCustomDraw (long hDC)
{

/I Users do not need to draw the underlying image here because vision framework draw it onto canvas

[/l automatically if the property “bool AutoDrawSurface “ is set as TRUE (which is a default value)

I Select white pen and draw a white straight line from (0, 0) to (100, 100)

SelectObject ((HDC) hDC , GetStockObject (WHITE_PEN)) ;

MoveToEx ((HDC) hDC , 0*VisionFramework->ZoomX+ VisionFramework->PanX , 0*

VisionFramework->ZoomY+ VisionFramework->PanY) ;
LineTo ((HDC) hDC , 100* VisionFramework->ZoomX+ VisionFramework->PanX , 100*

VisionFramework->ZoomY+ VisionFramework->PanY') ;

Typically, users can arrange image processing code fragment in the event
“OnSurfaceFilled” while arranging image drawing code fragment in the event

“OnCustomDraw”. The “OnSurfaceFilled” - "OnCustomDraw”

two-event-operation-mode is just the key reason that vision framework can
dramatically reduce the effort of developing and maintaining software.

29

ALTAIR SERIES

Chapter 5 Introduction to RS232 configuration

Press the button “1 / O States” to present “I/O States” form as shown in Figure

14.
Legend 170 States
Leqgend Trigger Type———
™
O Com Port iz Active Q| Com Port iz Inactive J
CGS":;E:H =T = t_I Trigger Type ~ Messages from Com
 F5-222 communication port - Port
I (Commands and Meszages from R5232
| Corm Port Channel State
Com Port I'I LI
Command
Baud Fat 9600 -
Management e nEe I —I
Create Com Channel | [restray Cam Channel |
\ A Al

ou can ingert / delete / edit £ execute the all Cormmand Mezzages from RS5-232

command lizt by mouze and keyboard directly | Trigger Message = | @TRIGGER*
Inde:-:l Command | Title |
0 =H * G0 HOME
1 H Y GO HOME
2 ki, * MOWE ABS
3 hdd, Y MOWE ABS
4 =hF * MOWE REL
5 b Gls Y MOWE REL
Command Paramz = | Cusgtorm Command |
Command [ndex = -1 Execute Cammatnd | Send Custam Cammard |
\ /4
Commands from Com Port
Figure 14

5-1 Introduction
For being the best bare development system of vision, vision framework support
versatile RS232 functionality. Through the help of vision framework, RS232
communication becomes very simple. The kernel of vision framework send or
receive any data to or from com port automatically; buffering, decoding and
filtering the incoming messages according to an user-defined string format, then
assert the events to notify users if any user-defined string pattern was received.
This is a nice feature and very useful for interfacing vision framework with
devices such as PLC. Also, the kernel of vision framework send strings users
committed automatically. Users can customize command string table themselves
and send specific command string simply by assigning the index. Vision
framework makes RS232 hardware transparent to developers and dramatically
reduce the effort developers should contribute in developing a vision system.

30

ALTAIR SERIES

5-2 Legend
“Legend” shows the legend of com port state. Light green means com port is
connected while grey means com port is disconnected.

5-3 Com Port State
The LED-liked region shows the com port connectivity according to the logic
described in section 4-2. Light green means com port is connected while grey
means com port is disconnected. The combo box of “Com Port” shows the index
of com port users would like to open. The combo box of “Baud Rate”” shows the
baud rate of com port users would like to open. Two buttons “Create Com
Channel” ~ *“Destroy Com Channel” can help users to connect to com port or
disconnect from com port. Of course, before connecting to com port, users should
configure parameters of communication such as “Com Port” ~ ”Baud
Rate”...etc. (other parameters will be stated in chapter 5) , and then press the
button “Create Com Port” to connect the com port.

5-4 Commands Management
The table in the middle of this region shows the default commands list of vision
framework. Users can customize their own commands list and send commands
simply by assigning the index. Note that the field of “Title” can be any
description string that help users to understand the meaning of specific command.
The edit box “Command Params="" determines the extra parameters when users
send the commands in the commands list. The “Command Index’ shows the
index users specified (typically, users can specify the command simply by
clicking the command in the commands list). Note that “Command Index”
equals -1 means no command were specified at all. After specifying command
and optionally fill the extra parameters, users can press the button “Execute
Command” to send the command to com port immediately.

5-5 Messages from Com Port
The dark blue region shows all of the messages received by com port. Strings
sent from the peer (ex. PLC ~ PC...etc.) will be shown in this region.

5-6 Commands from Com Port
The dark blue region shows all of the qualified messages (the “qualified”
messages is the so-called “commands” sent from the peer and the format of
commands can be configured by a leading character and a trailing character in
vision framework) received by com port. Qualified messages sent from the peer
(ex. PLC ~ PC...etc.) will be shown in this region. Also, users can define a
specific string pattern (i.e. trigger message) to trigger vision framework when
the string match the pattern is received. When vision framework is triggered, the
event “OnTriggerMsgArrived” will be assert from vision framework to notify
user to do something like “acquire image”...etc. Input custom command into the
edit box “Custom Command” and press the button “Send Custom Command” to
send the custom command to the peer immediatelly.

31

ALTAIR SERIES

5-7 Trigger Type

The trigger type region determines the type of trigger that vision framework can
accept. There are three options can be configured. Checking the option “TTL”
configures ALTAIR framegrabber accepting triggers only from digital input
(TTL input) and vision framework will assert event “OnHardwareTrigger”
whenever “High-to-low” transition occurs in digital input port. Checking the
option “Others” configures ALTAIR framegrabber accepting triggers only from
communication port (com port) and vision framework will assert event
“OnTriggerMsgArrived” whenever user-defined trigger command receives in
com port. Checking the option “NULL” configures ALTAIR framegrabber
accepting no triggers at all. Note that configuring trigger type to “Others” or
“NULL” will not suppress the event “OnHardwareTrigger” when
“High-to-low” transition occurs in digital input port while configuring trigger
type to “TTL” will supress the event “OnTriggerMsgArrived” when
user-defined trigger command receives in com port.

5-8 Releated Properties / Methods / Events
See the chapter 5 for details of programming interface.

32

ALTAIR SERIES

Chapter 6 Programming Interface of Vision Framework

6-1 Introduction

The vision framework component (AxAltairVisionFramework) is a rapid
vision development framework dedicately designed to all the vision hardwares
from AISYS Vision Corporation. The vision framework component is not only
the easiest way to integrate AISYS vision hardware with user’s system but an
exquisite kernel of AISYS OVK Framework which is a powerful vision software
library. Through the help of the vision framework, the complexity of developing
vision system dramatically drops off. In addition, vision framework can also
reduce the complexity and effort of software maintain due to its patented structure.
No matter users adopt only hardware or whole hardware and software solution
from AISYS, vision framework always meets users’ needs seamlessly and we hope
technology and products from AISYS brings users the all new experience in vision
development.

6-2 Programming Interface
6-2-1 Properties
bool CanvasAutoSize (R/W, Default=True); Set as TRUE means vision
framework will adjust geometry of canvas according to image size and zoom
factor automatically ; set as FALSE means vision framework will not adjust
geometry of canvas when image size or zoom changing.

int CanvasWidth (R/W, Default=640); This property determine the width of
canvas in unit of pixel.

int CanvasHeight (R/W, Default=480); This property determine the height
of canvas in unit of pixel.

bool AutoDrawSurface (R/W, Default=TRUE) ; Set as TRUE means vision
framework will automatically draw the underlying image onto canvas
whenever vision framework finishs acquiring image. Set as FALSE to disable
this automatic drawing facility. With this property set as FALSE, ones can
draw the image by the method “DrawSurface” within the event
“OnCustomDraw” if users would like to draw the image themselves.

float ZoomX (R/W, Defautl=1.0) ; This property determine the zooming
factor in the direction of X. 1.0 means 100% and 2.0 means 200% ...etc.

float ZoomY (R/W, Defautl=1.0) ; This property determine the zooming
factor in the direction of Y. 1.0 means 100% and 2.0 means 200% ...etc.

int PanX (R/W, Defautl=1.0) ; This property determine the panning factor in
the direction of X. Positive value means right offset, negative values means
left offset. The unit is pixel.

33

ALTAIR SERIES

int PanY (R/W, Defautl=1.0) ; This property determine the panning factor in
the direction of . Positive value means up offset, negative values means
down offset. The unit is pixel.

TxAxColor PenColor (R/W, Default=AX_COLOR_WHITE, 20 in
decimal); This property determines the pen color of the drawing area in
AxCanvas component. Note that users should configure pen color by this
property instead of using windows API to avoid GDI confliction. The
available options are as the following :

AX_COLOR_AQUA 0 in decimal
AX_COLOR_BLACK 1 in decimal
AX _COLOR_BLUE 2 in decimal
AX_COLOR_CREAM 3 in decimal
AX_COLOR_DKGRAY 4 in decimal
AX_COLOR_FUCHSIA 5 in decimal
AX_COLOR_GRAY 6 in decimal
AX_COLOR_GREEN 7 in decimal
AX_COLOR_LIME 8 in decimal
AX_COLOR_LTGRAY 9 in decimal
AX_COLOR_MAROON 10 in decimal

AX_COLOR_MEDGRAY 11 in decimal
AX_COLOR_MONEYGREEN 12 in decimal

AX_COLOR_NAVY 13 in decimal
AX_COLOR_OLIVE 14 in decimal
AX_COLOR_PURPLE 15 in decimal
AX _COLOR_RED 16 in decimal
AX COLOR_SILVER 17 in decimal
AX COLOR_SKYBLUE 18 in decimal
AX COLOR_TEAL 19 in decimal
AX _COLOR_WHITE 20 in decimal
AX COLOR_YELLOW 21 in decimal
AX COLOR_OTHER 22 in decimal

Note that if PenColor =AX_COLOR_OTHER, users can customize pen
color by assigning color constant to the property “CustomPenColor”. See the
next property for more details.

long CustomPenColor (R/W, Default= 16777215); This property determines
the customized pen color when PenColor =AX_COLOR_OTHER. The color

34

ALTAIR U SERIES

value is encoded by the following method : 0XOOBBGGRR in hexdecimal.
Each color component have 8 bits (256 levels) to quantize. For example, pure
red can be expressed as 0xO00000FF = 255 ; pure green can be expressed as
0x0000FF00 = 65280 ; pure blue can be expressed as 0xO0FF0000 =
16711680.

int PenWidth (R/W, Default=1); This property determines the width of the
pen of drawing area in AxCanvas component. Note that users should
configure pen width by this property instead of using windows API to
avoid confliction.

TxAxPenStyle PenStyle (R/W, Default= AX_PENSTYLE_SOLID, 0 in
decimal); This property determines the pen style of the drawing area in
AxCanvas component. Note that users should configure pen style by this
property instead of using windows API to avoid GDI confliction. The
available options are as the following :

AX_PENSTYLE_SOLID 0 in decimal
AX_PENSTYLE_DASH 1 in decimal
AX_PENSTYLE_DOT 2 in decimal
AX_PENSTYLE_DASHDOT 3 in decimal
AX_PENSTYLE_DASHDOTDOT 4 in decimal
AX_PENSTYLE_CLEAR 5 in decimal

AX_PENSTYLE_INSIDEFRAME 6 in decimal

TxAxColor FontColor (R/W, Default=AX_COLOR_BLACK, 1in
decimal); This property determines the font color of the drawing area in
AxCanvas component. Note that users should configure font color by this
property instead of using windows API to avoid GDI confliction. The
available options are as the following :

AX_COLOR_AQUA 0 in decimal
AX_COLOR_BLACK 1 in decimal
AX_COLOR_BLUE 2 in decimal
AX_COLOR_CREAM 3 in decimal
AX_COLOR_DKGRAY 4 in decimal
AX_COLOR_FUCHSIA 5 in decimal
AX_COLOR_GRAY 6 in decimal
AX_COLOR_GREEN 7 in decimal

AX _COLOR_LIME 8 in decimal

35

ALTAIR U SERIES

AX_COLOR_LTGRAY 9 in decimal

AX_COLOR_MAROON 10 in decimal
AX_COLOR_MEDGRAY 11 in decimal
AX_COLOR_MONEYGREEN 12 in decimal

AX_COLOR_NAVY 13 in decimal
AX_COLOR_OLIVE 14 in decimal
AX_COLOR_PURPLE 15 in decimal
AX_COLOR_RED 16 in decimal
AX_COLOR_SILVER 17 in decimal
AX_COLOR_SKYBLUE 18 in decimal
AX_COLOR_TEAL 19 in decimal
AX_COLOR_WHITE 20 in decimal
AX_COLOR_YELLOW 21 in decimal
AX_COLOR_OTHER 22 in decimal

Note that if FontColor =AX_COLOR_OTHER, users can customize font
color by assigning color constant to the property “CustomFontColor”. See
the next property for more details.

long CustomFontColor (R/W, Default=16777215); This property
determines the customized font color when FontColor
=AX_COLOR_OTHER. The color value is encoded by the following
method : 0OXOOBBGGRR in hexdecimal. Each color component have 8 bits
(256 levels) to quantize. For example, pure red can be expressed as
0x000000FF = 255 ; pure green can be expressed as 0x0000FF00 = 65280 ;
pure blue can be expressed as 0x00FF0000 = 16711680.

TxAxColor BrushColor (R/W, Default=AX_COLOR_WHITE, 20 in
decimal); This property determines the brush color of the drawing area in
AxCanvas component. Note that users should configure brush color by this
property instead of using windows API to avoid GDI confliction. The
available options are as the following :

AX_COLOR_AQUA 0 in decimal
AX_COLOR_BLACK 1 in decimal
AX_COLOR_BLUE 2 in decimal
AX_COLOR_CREAM 3 in decimal
AX_COLOR_DKGRAY 4 in decimal
AX_COLOR_FUCHSIA 5 in decimal

AX_COLOR_GRAY 6 in decimal

36

ALTAIR U SERIES

AX_COLOR_GREEN 7 in decimal
AX COLOR_LIME 8 in decimal
AX_COLOR_LTGRAY 9 in decimal
AX_COLOR_MAROON 10 in decimal

AX_COLOR_MEDGRAY 11 in decimal
AX_COLOR_MONEYGREEN 12 in decimal

AX_COLOR_NAVY 13 in decimal
AX_COLOR_OLIVE 14 in decimal
AX_COLOR_PURPLE 15 in decimal
AX_COLOR_RED 16 in decimal
AX_COLOR_SILVER 17 in decimal
AX_COLOR_SKYBLUE 18 in decimal
AX_COLOR_TEAL 19 in decimal
AX_COLOR_WHITE 20 in decimal
AX_COLOR_YELLOW 21 in decimal
AX_COLOR_OTHER 22 in decimal

Note that if BrushColor =AX_COLOR_OTHER, users can customize font
color by assigning color constant to the property “CustomBrushColor”. See
the next property for more details.

long CustomBrushColor (R/W, Default=16777215); This property
determines the customized brush color when BrushColor
=AX_COLOR_OTHER. The color value is encoded by the following
method : 0OXOOBBGGRR in hexdecimal. Each color component have 8 bits
(256 levels) to quantize. For example, pure red can be expressed as
0x000000FF = 255 ; pure green can be expressed as 0x0000FF00 = 65280 ;
pure blue can be expressed as 0x00FF0000 = 16711680.

TxAxBrushStyle BrushStyle (R/W, Default= AX_BRUSHSTYLE_SOLID,
0 in decimal); This property determines the brush style of the drawing area in
AxCanvas component. Note that users should configure brush style by this
property instead of using windows API to avoid GDI confliction. The
available options are as the following :

AX_BRUSHSTYLE_SOLID 0 in decimal
AX_BRUSHSTYLE_CROSS 1 in decimal
AX_BRUSHSTYLE_CLEAR 2 in decimal

AX_BRUSHSTYLE_DIAGCROSS 3 in decimal
AX_BRUSHSTYLE_BDIAGONAL 4 in decimal

37

ALTAIR SERIES

AX_BRUSHSTYLE_FDIAGONAL 5 in decimal
AX_BRUSHSTYLE_HORIZONTAL 6 in decimal
AX_BRUSHSTYLE_VERTICAL 7 in decimal

Long hDC (Read Only) ; This property is the handle of device context (HDC)
of canvas. All the GDI APIs and drawing functions in AISYS OVK
Framework need this property to draw something in canvas. Because the
canvas of vision framework is double buffered, users need to refresh canvas

by themselves through invoking method “RefreshCanvas”.

bool ShowToolBar (R/W, Default=TRUE); This property determines the
visibility of tool bar which is located at the bottom of vision framework. Set
as FALSE to hide the tool bar if users would like to make the vision
framework more compact as shown in Figure 15.

" Forat BE)

Figure 15.

38

ALTAIR SERIES

TxAxaPortID PortID (R/W, Default=AXA_PORT _0); This property
determine the index of framegrabber users would like to connect. Typically,
after assigning PortlID, invoking the method “CreateChannel’ to connect the
framegrabber specified by PortlD. The available options are as the following:

AXA PORT 0 0 in decimal

AXA _PORT_1 1 in decimal

AXA PORT 2 2 in decimal

AXA PORT_3 3 in decimal

TxAxaAcqColFmt AcqgColFmt (R/W,
Default=AXA_ACQCOLFMT_GREYLEVEL, 0 in decimal); This
property determine the color format of connected camera. The available
options are as the following:
AXA ACQCOLFMT_GREYLEVEL 0 in decimal
AXA ACQCOLFMT_RGB24 1 in decimal

TxAxaVideoFmt VideoFmt (R/W,
Default=AXA_VIDEOFMT_FULL_NTSC, 0 in decimal); This property
determine the video sync format of connected camera. The available options
are as the following:

AXA_VIDEOFMT_FULL_NTSC 0 in decimal

AXA VIDEOFMT_FULL _PAL 1indecimal

AXA_VIDEOFMT_CIF_NTSC 2indecimal

AXA VIDEOFMT_CIF_PAL 3 in decimal

int GrabCount (R/W, Default=0); This property determine the number of
frames need to acquire. Vision framework control ALTAIR series
framegrabbers by two properties “GrabCount”~”ChannelState”” mainly. The
property ”ChannelState” controls the operation mode of framegrabber. There
are two operation modes of framegrabber available “ACTIVE”-"IDLE”. See
the property “ChannelState” for details. “GrabCount” will be decreased by
1 when each acquisition is finished. When “GrabCount” becomes zero,
framegrabber stop acquiring although the ”ChannelState” is still in
“ACTIVE” mode. It mean acquires image infinitely if “GrabCount” is -1
and ”ChannelState” is in “ACTIVE” mode which is so-called “Live
Image”.

int FrameRate (R/W, Default=30); This property determine the data output
rate (so-called frame rate) of the framegrabber.

bool IsChannelCreated (Read Only); Read this property to determine
whether any camera is connected by vision framework or not.

TxAxaChannelState ChannelState (R/W,
Default=AXA_CHANNELSTATE_IDLE, 0 in decimal); This property
determine the operation mode of the channel. This property should be

39

ALTAIR SERIES

configured combined with the property “GrabCount”. See the property

“GrabCount” for the detail. The available options are the followings:
AXA_CHANNELSTATE_IDLE 0 in decimal
AXA _CHANNELSTATE_ACTIVE 1indecimal

int Brightness (R/W, Default=128); This property determine the brightness
of video amplifier in ALTAIR framegrabber. It ranges from 0 to 255 and the
neutral value is 128.

int Contrast (R/W, Default=108); This property determine the contrast of
video amplifier in ALTAIR framegrabber. It ranges from 0 to 255 and the
neutral value is 108.

int Hue (R/W, Default=0); This property determine the hue of ALTAIR
framegrabber. It ranges 0 to 255.

int ChromaU (R/W, Default=127); This property determine the U gain of
chroma in ALTAIR framegrabber. It ranges from 0 to 255 and the neutral
value is 127.

int ChromaV (R/W, Default=127); This property determine the V gain of
chroma in ALTAIR framegrabber. It ranges from 0 to 255 and the neutral
value is 127.

int ImageWidth (Read Only); Read this property to determine the width of
Image in pixels that the framegrabber output. This property will be changed
according to the property “VideoFmt”.

int ImageHeight (Read Only); Read this property to determine the height of
Image in pixels that the framegrabber output. This property will be changed
according to the property “VideoFmt”,

bool ShowControlPanel (R/W, Default=False); A versatile control panel for
ALTAIR framegrabber was embedded in vision framework. With the help of
control panel, users can integrate framegrabber to their system very easily and
rapidly. Important functions of the framegrabber can be configured through
the control panel without any programming codes. Set this property as True to
show the embedded control panel while False to hide the control panel.

long ActiveSurfaceHandle (Read Only); Read this property to fetch the
handle of the latest acquired image. With the handle at hand, users can draw it
anywhere they would like to by invoking the method “DrawSurface” of
vision framework or pass it to the image processing library provided by
AISYS ('such as VAlign ~ OVK Framework...etc.) for further processing and
analysis. Note that this handle is completely a object handle specific to
software products from AISYS not a physical memory address of image data.

40

ALTAIR SERIES

To obtain the physical memory address of image data, pass this handle to the
method “GetlmagePtr” to get the address.

TxAxComPortID ComPortID (R/W, Default= AX_COMPORT_COM1, 0
in decimal); This Property determine the index of com port users would like
to connect. Typically, after assigning ComPortlID, invoking the method
“CreateComPortChannel” to connect com port. The available options are as

the following:
AX_COMPORT_COM1 0 in decimal
AX_COMPORT_COM2 1 in decimal
AX_COMPORT_COM3 2 in decimal
AX_COMPORT_COM4 3 in decimal

TxAxComPortBaudRate ComPortBaudRate (R/W,

Default=AX_COMPORT_BAUDRATE_9600_ BPS, 6 in decimal); This

prop ert?/ determine the speed of com port users would like to connect. The
e

available options are as the following:
AX COMPORT_BAUDRATE_110 BPS 0in
decimal
AX _COMPORT_BAUDRATE_300 BPS lin
decimal
AX_COMPORT_BAUDRATE_600 BPS 2in
decimal
AX COMPORT_BAUDRATE_ 1200 BPS 3in
decimal
AX _COMPORT_BAUDRATE_ 2400 BPS 4in
decimal
Q\X CCIJMPORT BAUDRATE_4800 BPS 5in
ecima
AX COMPORT_BAUDRATE_ 9600 BPS 6in
decimal
ﬁ\x C(?MPORT BAUDRATE_ 14400 BPS 7in
ecima
Q\X CCIJMPORT BAUDRATE_19200 BPS 8in
ecima
Q\X CCI)MPORT BAUDRATE_ 38400 BPS 9in
ecima
ﬁ\x C(?MPORT BAUDRATE_56000 BPS 10 in
ecima
Q\X CCIJMPORT BAUDRATE_57600 BPS 11in
ecima
Q\X CCI)MPORT BAUDRATE_ 115200 BPS 12 in
ecima
ﬁ\x C(?MPORT BAUDRATE_128000 BPS 13in
ecima
AX_COMPORT_BAUDRATE_256000 BPS 14 in
decimal

TxAxComPortDataBits ComPortDataBits (R/W,
Default=AX_COMPORT_DATABITS_8, 4 in decimal); This property
determine the data bits of com port users “would like to connect. The available

options are as the following:
AX_COMPORT_DATABITS 4 0 in decimal

41

ALTAIR SERIES

AX_COMPORT DATABITS 5 1 in decimal
AX_COMPORT DATABITS 6 2 in decimal
AX_COMPORT DATABITS 7 3 in decimal
AX_COMPORT_DATABITS 8 4 in decimal

TxAxComPortFlowControl ComPortFlowControl (R/W, Default=
AX_COMPORT_FLOWCONTROL_DEFAULT, 4 in decimal); This
property determine the flow control of com port users would like to connect.
The available options are as the following:
,dAXFC(?MPORT_FLOWCONTROL_NONE 0in
ecima
Q\XFC(?MPORT_FLOWCONTROL_CTS lin
ecima
,dAX‘_CCIJMPORT_FLOWCONTROL_DTR 21in
ecima
,dAXFC(?MPORT_FLOWCONTROL_SOFTWARE 3in
ecima
QXFC(?MPORT_FLOWCONTROL_DEFAU LT 4in
ecima

TxAxComPortParity ComPortParity (R/W, Default=
AX_COMPORT_PARITY_NONE, 0 in decimal); This property determine
the parity of com port users would like to connect. The available options are

as the following:
AX_COMPORT_PARITY_NONE 0 in decimal
AX_COMPORT_PARITY_ODD 1 in decimal
AX_COMPORT_PARITY_EVEN 2 in decimal
AX_COMPORT_PARITY_MARK 3indecimal
AX_COMPORT_PARITY_SPACE 4indecimal

TxAxComPortStopBits ComPortStopBits (R/W, Default=
AX_COMPORT_STOPBITS_10, 0 in decimal); This property determine
the stop bits of com port users would like to connect. The available options
are as the following:

AX_COMPORT_STOPBITS_10 0 in decimal
AX_COMPORT_STOPBITS_15 1 in decimal
AX_COMPORT_STOPBITS_20 2 in decimal

bool ComPortConnected (Read Only); Read this property to determine
whether the com port is connected by vision framework or not.

String CmdMsgBeginToken (R/W, Default="@") ~ String
CmdMsgEndToken (R/W, Default="*""); These two properties determine
the start and end token of a “Command”. The “Command” is a qualified
message that can be configured by a leading character and a trailing character.
The property “CmdMsgBeginToken “ specifies the leading character of a
“Command” while the property “CmdMsgEndToken” specifies the trailing
character of a “Command”.

42

ALTAIR SERIES

String SeparateToken (R/W, Default=""""); This property determines the
separate token. The separate token is inserted between stock command
(vision framework can store a list of “stock” commands) and parameters
when users send the stock commands by user interface.

String CmdMsg (Read Only); Read this property to determine current
“Command” received by com port.

String TriggerMsg (R/W, Default="TRIGGER”); This property defines a
specific string pattern (i.e. trigger message) to trigger vision framework
when the string match this pattern is received. When vision framework is
triggered, the event “OnTriggerMsgArrived” will be assert from vision
framework to notify user to do something like “acquire image”...etc. In
default case, when a command “@TRIGGER*” received, vision framework
Is triggered and the event “OnTriggerMsgArrived” is asserted.

int NumOfCommands (R/W, Default=6); This property determines the
numbers of stock commands currently stored in vision framework. Change the
this property will force vision framework allocate the necessary memory
space for storing the incoming commands. Typically, users do not need to
change this property directly, because the command management methods do
this for users.

int CommandIndex (R/W, Default=6); This property determines the index
of specific command currently stored in vision framework. This property is
typically used in conjunction with the property “CommandTitle”. Users read
the property “CommandTitle” to get the description string of a specific
command or write the property “CommandTitle” to change the description
string of a specific command after assigning the property “CommandIindex”
to indicate the specific command.

6-2-2 Methods

bool CreateChannel() ; Connect to ALTAIR framegrabber. This method
should be invoked before any attempts to control ALTAIR framegrabber.
Before invoking this method, users should configure PortID - VideoFmt -
AcqgColorFmt properties to appropriate values. Return value TRUE means
the vision framework connects framegrabber successfully. Return value
FALSE means the vision framework connects framegrabber failed and users
should check the hardware and device driver installation to shoot where the
trouble is.

bool DestroyChannel() ; Disconnect from ALTAIR framegrabber. This
method should be invoked if the connected is not used anymore. Return value
TRUE means the vision framework disconnects from framegrabber
successfully. Return value FALSE means the vision framework disconnects
from framegrabber failed and users should check the hardware and device
driver installation to shoot where the trouble is.

void Live() ; Invoke this method makes vision framework enter “Live
43

ALTAIR SERIES

Image” mode. At this time, the framegrabber acquires image infinitely and
assert two successive events “OnSurfaceFilled” ~ ”OnCustomDraw” to
notify user to complete necessary tasks. Invoking this method is equivalent to
the following code fragment:

AxAltairVisionFrameworkl.GrabCount = -1
Ax AltairVisionFrameworkl.ChannelState =
AXA CHANNELSTATE_ACTIVE

void Freeze() ; Invoke this method makes vision framework enter “Freeze
Image” mode. At this time, the framegrabber stop acquiring image. Invoking
this method is equivalent to the following code fragment:

Ax AltairVisionFrameworkl.ChannelState =
AXA CHANNELSTATE_IDLE
Ax AltairVisionFrameworkl. GrabCount =0

void Snap() ; Invoke this method makes vision framework enter “Snap
Image” mode. At this time, the framegrabber acquires one image and assert
two successive events “OnSurfaceFilled” ~ ”OnCustomDraw” to notify user
to complete necessary tasks. Invoking this method is equivalent to the
following code fragment:

Ax AltairVisionFrameworkl.ChannelState =
AXA CHANNELSTATE_IDLE
AxAltairVisionFrameworkl.GrabCount = 1
Ax AltairVisionFrameworkl.ChannelState =
AXA CHANNELSTATE_ACTIVE

void LoadFile(String FileName) ; Invoke this method makes vision
framework loads the image file FileName specified into the current frame
buffer and assert two successive events

“OnSurfaceFilled” ~ ”OnCustomDraw’ to notify user to complete necessary
tasks.

void SaveFile(String FileName , TxAxImageFileFormat FileFormat) ;
Invoke this method makes vision framework saves the current frame buffer to
image file with FileName as name and FileFormat as file format. The
available options for FileFormat is the following:
AX_IMAGE_FILE_TYPE_GREYLEVEL_BMP:
Greylevel in BMP format
AX_IMAGE_FILE_TYPE_FULLCOLOR_BMP: True
color in BMP format
AX_IMAGE_FILE_TYPE_GREYLEVEL_JPG:
Greylevel in JPEG format
AX_IMAGE_FILE_TYPE_FULLCOLOR_JPG: True
color in JPEG format

long DrawSurface (Long SurfaceHandle) ; Draw the image specified by
SurfaceHandle onto the canvas of vision framework. Returned value means
the number of scanlines actually drawed. Typically, vision framework draw

44

ALTAIR SERIES

the underlying image onto canvas automatically, users do not need to draw the
underlying image by themselves. When AutoDrawSurface is set as FALSE,
vision framework will not draw the underlying image automatically and thus
users can use this method draw the image in the event “OnCustomDraw”.
Note that users should not need to invoke “RefreshCanvas” method after
drawing in the event “OnCustomDraw” because vision framework will do
this for you. “RefreshCanvas” method should be invoked after drawing
anything out of the event “OnCustomDraw”.

void DrawText (String Text, int X, intY') ; Draw the string Text onto
canvas at the position(X,Y). Same as the method “DrawSurface”, users
should not need to invoke “RefreshCanvas” method after drawing in the
event “OnCustomDraw’ because vision framework will do this for you.
“RefreshCanvas” method should be invoked after drawing anything out of
the event “OnCustomDraw”.

void DrawLine (int SX, int SY, int DX, int DY) ; Draw the straight line
from position (SX,SY) to position (DX,DY) onto canvas. Same as the method
“DrawSurface”, users should not need to invoke “RefreshCanvas” method
after drawing in the event “OnCustomDraw” because vision framework will
do this for you. “RefreshCanvas” method should be invoked after drawing
anything out of the event “OnCustomDraw”.

long GetlmagePtr (Long SurfaceHandle , int X, int Y) ; Get the physical
memory address of the image data specified by SurfaceHandle and starting
position (X, Y). Returned value is the physical memory address of the
specified image data at the starting position (X, Y). Users can cast the
returned value to a byte pointer and thus can be a data source for the coming
procession.

void RefreshCanvas () ; When users draw anything onto canvas (through
hDC property) out of the event “OnCustomDraw”, you always need to
invoke the method “RefreshCanvas” manually because of double buffered
mechanism of canvas in vision framework. Users should not need to invoke
“RefreshCanvas” method after drawing in the event “OnCustomDraw”
because vision framework will do this for you.

void ForceReinspect () ; This method automatically simulate the flow of
actions that vision framework plays when acquiring and filling a new surface.
When invoking the method “ForceReinspect”, vision framework assert the
event “OnSurfaceFilled”” with the “active” surface handle bringing in. The
so-called “active” surface handle can be the most recently acquired surface if
no new image is acquired now or just the newly acquired image. This method
is useful especially when users want to “inspect manually” or test the whole
Inspection process for their software.

void ForceRedraw() ; This method automatically asserts event
“OnCustomDraw” to let users have a chance to “Draw the underlying
image or somewhat”. This method is useful especially when users want to
“draw something manually” or test the whole inspection process for their
software. Typically, this method is used in conjunction with the method

45

ALTAIR SERIES

“ForceReinspect” and is usually invoked after invoking the method
“ForceReinspect”.

TxAxaloState GetloState(TxAxaloPortType PortType, TxAxaloPort
Port); ALTAIR framegrabber support 4 In / 4 Out digital 10. Invoke this
method to read the current state of input or output port. PortType determine
the type of port users would like to read. The available options are the
followings:

AXA 10 PORT_TYPE_INPUT O in decimal

AXA 10 _PORT_TYPE_OUTPUT 1 in decimal
Port determine the index of port users would like to read. The available
options are the followings:

AXA 10 _PORT_00 0 in decimal

AXA 10 _PORT_01 1 in decimal (Reserved for
future use)

AXA 10 _PORT 02 2 in decimal (Reserved for
future use)

AXA 10_PORT_03 3 in decimal (Reserved for
future use)

AXA 10 _PORT 04 4 in decimal (Reserved for
future use)

AXA 10 _PORT _05 5 in decimal (Reserved for
future use)

AXA 10 _PORT 06 6 in decimal (Reserved for
future use)

AXA _10_PORT_07 7 in decimal (Reserved for
future use)

AXA 10 PORT 11 11 in decimal (Reserved for
future use)

AXA 10 _PORT 12 12 in decimal (Reserved for
future use)

AXA 10_PORT_13 13 in decimal (Reserved for
future use)

AXA 10 PORT 14 14 in decimal (Reserved for
future use)

AXA 10 _PORT 15 15 in decimal (Reserved for

future use)
The returned value determines the state of the specified port. The state are the

followings:
AXA _I0_STATE LOW 0 in decimal
AXA_10_STATE_HIGH 1 in decimal
AXA 10 _STATE_NULL 2 in decimal

“AXA _10_ STATE NULL” indicates the failure of execution of the method.

void SetloState(TxAxaloPort Port, TxAxaloState loState); Invoke this
method to write the state of the specified output port. Port determines the port
index users specified. loState determines the state of the port to change. The
available options are listed as above.

float GetFocusRatio (Long SurfaceHandle) ; Estimate the focus ratio of
46

ALTAIR SERIES

the image specified by SurfaceHandle. This is a very nice feature that help
users to design an auto-focus system without any other software or hardware.
When the focus is reached, this focus ratio will reach a local maximum thus
users can refer to this ratio to control the motion device and search the best
focus easily. The algorithm of this focus ratio is very fast and robust so that
the estimation is almost real-time and will not low down the frame rate at all.

bool CreateComPortChannel(); Connect to com port. This method should
be invoked before any attempts to communicate with com port. Before
invoking this method, users should configure ComPortID -
ComPortBaudRate -~ ComPortDataBits ~ ComPortFlowControl -
ComPortParity ~ ComPortStopBits to suit the peer’s need. Return value
TRUE means the vision framework connects com port successfully. Return
value FALSE means the vision framework connects com port failed.

bool DestroyComPortChannel(); Disconnect from com port. This method
should be invoked if com port is not used anymore. Return value TRUE
means the vision framework disconnects com port successfully. Return value
FALSE means the vision framework disconnects com port failed.

bool InsertCmd(String Cmd, String CmdTitle); Insert a new command to
vision framework. Cmd determines the command string while CmdTitle
determines the description string for this command. Return value TRUE
means the vision framework accept this command as stock command
successfully. Return value FALSE means the vision framework accept this
command as stock command failed.

bool InsertCmdByIndex(int CmdIndex, String Cmd, String CmdTitle);
Insert a new command at a specific index to vision framework. CmdIndex
determines the index. Cmd determines the command string while CmdTitle
determines the description string for this command. Return value TRUE
means the vision framework accept this command as stock command
successfully. Return value FALSE means the vision framework accept this
command as stock command failed.

bool DeleteCmdBylIndex(int CmdIndex); Delete a command at a specific
index. CmdIndex determines the index. Return value TRUE means the
vision framework delete this command from stock command successfully.
Return value FALSE means the vision framework delete this command from
stock command failed.

bool DeleteCmdByTitle(AnsiString CmdTitle); Delete a command that the
description string matches CmdTitle. Return value TRUE means the vision
framework delete this command from stock command successfully. Return
value FALSE means the vision framework delete this command from stock
command failed.

bool ModifyCmdBylIndex(int CmdIndex,AnsiString NewCmd); Modify
command at a specific index. CmdIndex determines the index. NewCmd
determines the new command string. Return value TRUE means the vision

47

ALTAIR SERIES

framework accept this modification successfully. Return value FALSE means
the vision framework accept this modification failed.

bool ModifyCmdByTitle(AnsiString CmdTitle,AnsiString NewCmd);
Modify command that the description string matches CmdTitle. CmdTitle
determines the description string. NewCmd determines the new command
string. Return value TRUE means the vision framework accept this
modification successfully. Return value FALSE means the vision framework
accept this modification failed.

bool ModifyCmdTitleBylIndex(int CmdIndex,AnsiString NewCmdTitle);
Modify command description string at a specific index. CmdIndex
determines the index. NewCmdTitle determines the new command
description string. Return value TRUE means the vision framework accept
this modification successfully. Return value FALSE means the vision
framework accept this modification failed.

bool ModifyCmdTitleByTitle(AnsiString CmdTitle,AnsiString
NewCmdTitle); Modify command description string that the description
string matches CmdTitle. CmdTitle determines the description string.
NewCmdTitle determines the new command description string. Return value
TRUE means the vision framework accept this modification successfully.
Return value FALSE means the vision framework accept this modification
failed.

bool ExecuteCmdBylIndex(int CmdIndex, String Params); Send the
command at a specific index to com port. CmdIndex determines the index.
Params determines the companion parameters for the command. Return value
TRUE means the vision framework sends this command successfully. Return
value FALSE means the vision framework sends this command failed.

bool ExecuteCmdByTitle(String CmdTitle, String Params); Send the
command whose description string matches CmdTitle to com port. CmdTitle
determines the description string. Params determines the companion
parameters for the command. Return value TRUE means the vision
framework sends this command successfully. Return value FALSE means the
vision framework sends this command failed.

void DirectSendCmd(String Cmd); Send the command Cmd to com port
directly.

6-2-3 Events

void OnCanvasMouseDown (int X, int Y') ; Vision framework assert this
event when users click within the region of canvas. The X and Y parameters
indicates the position users clicked in the unit of pixel.

void OnCanvasMouseMove (int X, int Y) ; Vision framework assert this

48

ALTAIR SERIES

event when users move cursor within the region of canvas. The X and Y
parameters indicates the position users moving in the unit of pixel.

void OnCanvasMouseUp (int X, intY) ; Vision framework assert this
event when users release the mouse button within the region of canvas. The X
and Y parameters indicates the position users released in the unit of pixel.

void OnSurfaceFilled (Long SurfaceHandle) ; The acquisition flow is
fully controlled by vision framework and vision framework will assert two
successive events “OnSurfaceFilled” ~ ”OnCustomDraw” to notify user to
do something like “Process the underlying image data” ~ “Draw the
underlying image or somewhat” whenever a frame buffer (or so-called
surface) is filled with new image data just acquired by framegrabber. The
“OnSurfaceFilled” ~ "OnCustomDraw” two-event-operation-mode is the
key role in vision framework.

void OnCustomDraw (Long hDC) ; The acquisition flow is fully controlled
by vision framework and vision framework will assert two successive events
whenever a frame buffer (or so-called surface) is filled with new image data

just acquired by framegrabber. The “OnSurfaceFilled” ~ ”OnCustomDraw”

two-event-operation-mode is the key role in vision framework.

void OnHardwareTrigger (Long loStates) ; The vision framework assert
this event just after the connected camera received a valid hardware trigger
from digital input line. loStates means the current state of 1/O lines.

void OnCmdMsgArrived () ; Vision framework assert this event when com
port receives a “Command”. A “Command” is a qualified message (the
“qualified” message is the so-called “commands” sent from the peer and the
format of commands can be configured by a leading character and a trailing
character in vision framework) received by com port.

void OnTriggerMsgArrived () ; Vision framework assert this event when
com port receives “Trigger Command”. A “Trigger Command” is a
command that interior string (leading and trailing characters are exclusive)
matches a specific string pattern (can be defined by the property
“TriggerMsg”).

49

ALTAIR SERIES

Chapter 7 Another way of Integration : Stand Alone Component

In addition to integrate vision system with vision framework, AISYS provides
another way “Stand Alone Component” method to let user integrate with more
flexilibity. The difference between vision framework and stand alone component
method is : vision framework will do almost all for users (e.g. image rendering -
zooming control ~ RS232 interfacing...etc) but stand alone component doesn’t.
Some users may prefer to integrate ALTAIR with stand alone component rather
than vision framework because of needing more flexibility. Briefly speaking, stand
alone component also provides a solution to integrate vision system in a manner of
“Pick ~ Place and Play” just like vision framework except rendering image
automatically. Let us introduce a “Quick Start” to demonstrate how to get a
breakthrough to a vision system powered by stand alone component. Before we
start the introduction, users should follow the instructions mensioned in part | ~ Il
and be sure that an ALTAIR framegrabber is installed to your computer properly.

7-1 Quick Start
7-1-1 Pick
1. Start Microsoft Visual Basic version 6.0 or Visual C++ 6.0 compiler as
shown in Figure 16. (Upgrading Visual Basic or Visual C++ to service pack 5

or later is suggested). Here, we use Microsoft Visual Basic 6.0 as the reference
platform.

% Project]l - Microsoft ¥isual Basic [design] - [Forml (Form}]
59 File Edit View | Project Format Debug Eun Cuery Disgram Tools Add-Tng Window Help

“@'E*E|%ij§f£&0m bl -|%%’%’?§fﬁ
448 440 Module - —"
Generel 41 4dd Closs Module =B/ed

[0l & Add User Control

BS 5] Add Property Page
@ Ldd Teer Dacmment

= 3 Add WebClas

o

. 4dd DHTML Page
B~ Add Microsoft UssrComnection
i Add File. . Chl+D
Eemove Forml
P4 References.

Components... Cil+ T

Froject] Properties. .
T

Figure 16.

50

ALTAIR SERIES

2. Choose menu Project — Components — Figure 1 — Check
AxAltairDrv Library and AxOvkBase— OK Button as shown in Figure
25 ~ Figure 17.

Components H

Controls | Diesigners | Insertable ibjects

[1:-) VideoSoft vsFlex3 Controls

[] Active Setup Control Library

[] AxAltzirUDry Library

[] AxaltzirUVisionFrameworkCirl Library
[] AxAltairvisionFrameworkCirl Library I
[] AxAudiolib 1.0 Type Library -
[axaudiowaveformMatcherCtrl Library ST
[] AxBrowse

[] AxCommCirl Library

[] AxGammaGeneratorCirl Library

AxOvkBase Library

(] AxCvkBlab Library] Browse. . |

<] 1] (2] [T Selected Ttems Only

—AxAltairDrv Library
Location: C:\WINDOWS\system32\AxAltairDry, oox

ITI Cancel I Apply |

Figure 17
3. You can see the components in toolbox after finishing above procedures
that name "AxAltair" and "AxCanvas", as shown in Figure 18.

2 ROB
ﬁﬁ/,/ﬁ/,
7% T B o

i
el

Lo Tadr

Figure 18

51

ALTAIR SERIES

4. Pick the component from the palette as shown in Figure 19 - Figure 20.

R I ROB
ﬁﬁ//‘/”//‘
0% B Bp o

v
fye |

Lol ladr

Figure 19.
® ~ &8

Figure 20.
7-1-2 Place
Place the components onto the main form and drag it to adjust the dimension
as shown in Figure 21. Change the canvas geometry of AxCanvas component
to 640x480 by assigning the properties of AxAliatr : CanvasWidth=640,
CanvasHeight=480 as shown in Figure 22.

7-1-3 Play

As mensioned above, stand alone component behaves just like vision
framework except rendering image automatically. Now, let us construct the
codes for rendering image. AxAltair supports two important events
“OnSurfaceFilled” and “OnSurfaceDraw’ to provide the chances of
processing and rendering image for users. The event “OnCustomDraw” in
AxAltair is similar as the event “OnCustomDraw” in
AxAltairVisionFramework except that AxAltairVisionFramework draw
the image automatically before the event “OnCustomDraw” is invoked but
AxAltair doesn’t. So that users should draw the image by themselves within
the event “OnSurfaceDraw” to render image in stand alone component
method.

First, override the event “OnSurfaceFilled” to write some codes to process
52

ALTAIR SERIES

the underlying image if necessary as shown in Figure 23.

Figure 21.
Second, override the event “OnSurfaceDraw” to write some codes to render
the underlying image as shown in Figure 24.

5 Forml E]@

Figure 22.

53

ALTAIR SERIES

Here, add four buttons with captions “Control Panel”, “Live”, “Freeze”,
“Snap” and add some codes to control AxAltairU component to enter
associated modes accordingly as shown in Figure 25 and Figure 26.

|Hzﬂltairl _:J |ﬂn3urfnceﬂra

Frivate Sub Axdltairl_OnSurfaceDraw(EyVal ZurfaceHandle As Long)
"' Do 1mage processing here 11 necessary

Fnd sub

Figure 23.

|thltairl _:J |Dn3urfaceﬂra

Private Sub Axzdltalrl OnSurfaceDraw{EyWal SurfaceHandle 4s Long)

" Draw nnderlving lmage 1n A¥Canvas component.

" The underlving image 15 determined by the parameter "SurfaceHandle"
"hringing In by the event OnSurfaceDraw,

Gxaltalcl . Drawinrface SurfaceHandle, AxCanvasl. hDC, 1, 1, 0, 0O

" Because of donble buffered mechanism built-in AxCanvas Component,

"after drawing the underlying lmage on canvas Component, Invoke the method
"of AxCamvas component "RefreshCanvas® to refresh canwas to make canvas show
" the Image In client area of AxCanvas Component

fxCanvas | Refreshlanvas

End Zuhb

Private Sub Axaltalrl OnSurfaceF1llled(ByVal SurfaceHandle 4s Long)
" Do image processing here 1f necessary

End Zub

Figure 24

Snap

54

ALTAIR SERIES

ICullamH LI ICl ick

Frivate Sub fAxaltalcl Ondurfacelraw{BvVal SurfaceHandle 45 Long)

" Draw underlving image in AxCanvas Component.

" The underlyving Image 13 determined by the parameter "SurfaceHandle"

" bringing in by the event COnSurfaceDraw,

axhltalcl Drawdnrface SurfaceHandle, AxCamvasl WDC, 1, 1, 0, 0

" Because of double buffered mechanism built-in AxCanvas Component,
"after drawing the underlvying image on canvas component, Ilnvoke the metls
"of AxCanvas component "Eefreshfanvaz" to refresh canvas to make canvas
" the image in cllent area of AxCanvas Component

dxCanvas] RefreshCanvas

End Zuhb

Private Sub Axdltalrl OnlurfaceFilled{BvVal ZurfaceHandle As Long)
" Do image processing here 1f necessary

End Zub

Frivate 3Sub Commandl Clicki)

" Bhow or hide the control panel of Axéltalr component
If axsltairl. ShowControlPanel <= 0 Then

| Axbdltalcl BhowlontrolPanel = False
Elze

bxaltalcl, ShowControlPanel = True

End If
End Zub

Frivate Sub Command? Click()
" Enter live imiage mode
dxdltairl . Live

End Suhb

Frivate Sub Command? Click()
" Leave live image mode
dxdltaicl Freeze

End Zuhb

Frivate Sub Commandd Clicki)
" Take a snapshot

dxsltairl Bnap 1

End Zub

Frivate Sub Form_Load()

axhltairl . dcgColFmt = AM4 ACQCOLFMT GEEVLEVEL
Axhltairl VideoFmt = A4 VIDEOFMT _FULL_NTSC
#xAltairl CreateChannel

Fnd Sub

Figure 26
Now, a simple example for stand alone component method is completed. Press
the button “Start” of compiler to start the vision system and then press the
button “Live” to enter “Live Image” mode as shown in Figure 27.

55

ALTAIR SERIES

s | — oW

Figure 27

56

ALTAIR SERIES

7-2 Programming Model

Thanks to Microsoft ActiveX™ component model , all the software products
from AISYS adopts P-M-E (Property-Method-Event) programming model. The
acquisition flow is fully controlled by AxAltair component and the component will
assert two successive events “OnSurfaceFilled” and ”OnSurfaceDraw” to notify
user to do something like “Process the underlying image data” ~ “Draw the
underlying image or somewhat” whenever a frame buffer (or so-called surface)
is filled with new image data just acquired by framegrabber. The
“OnSurfaceFilled” ~ ”OnSurfaceDraw” two-event-operation-mode is the key
role in AxAltair component.

Prototype : void OnSurfaceFilled (long SurfaceHandle) ;

The event “OnSurfaceFilled” bring in a handle of surface which is a handle of
complex data structure that contains the image data just acquired. If user adopt
OVK Framework as the image processing library, one can directly pass the handle
to the vision library to complete the analysis tasks. If user adopt their own image
processing routines, one can invoke the method of AxAltair component “long
GetlmagePtr (long SurfaceHandle , int X, int Y)” by passing the handle of
surface as the first parameter and the starting position in the image as the second -
third parameters in the event “OnSurfaceFilled” to get the physical memory
address the image stored in. For example,

void AxAltair::OnSurfaceFilled (long SurfaceHandle)

{
Il Fetch the physical address of image (Top-left corner)

pPhylmageAddr=(BYTE*) AxAltairl->GetlmagePtr (SurfaceHandle,0,0) ;
Il Processing this image

OemProcessingRoutine (pPhylmageAddr) ;

57

ALTAIR SERIES

Prototype : void OnSurfaceDraw (long SurfaceHandle) ;
The event “OnSurfaceDraw” bring in a handle of surface which is a handle of
complex data structure that contains the image data just acquired. For example,

void AxAltair::OnSurfaceDraw (long SurfaceHandle)
{
Float ZoomX=1.0 , ZoomY=1.0;
Int PanX=0, PanY=0;
/I Users should draw the underlying image here because AxAltair component doesn’t draw it
Il by themselves
AxAltairl->DrawSurface (SurfaceHandle , AxCanvasl->hDC , ZoomX , ZoomY , PanX , PanY) ;
I Select white pen and draw a white straight line from (0, 0) to (100, 100)
SelectObject ((HDC) AxCanvasl->hDC , GetStockObject (WHITE_PEN)) ;
MoveToEx ((HDC) AxCanvasl->hDC ,
0* ZoomX+ PanX,
0* ZoomY+ PanY) ;
LineTo ((HDC) AxCanvasl->hDC ,
100* ZoomX+ PanX,
100* ZoomY+ PanY) ;
Il Remember to refresh the AxCanvas object you draw

AxCanvasl->RefreshCanvas();

Typically, users can arrange image processing code fragment in the event
“OnSurfaceFilled” while arranging image drawing code fragment in the event

“OnSurfaceDraw”. The “OnSurfaceFilled” ~ ”” OnSurfaceDraw”

two-event-operation-mode is just the key reason that AxAltair component can
dramatically reduce the effort of developing and maintaining software.

58

ALTAIR SERIES

7-3 Programming Interface of AxAltair Component
7-3-1 Properties
TxAxaPortID PortID (R/W, Default=AXA_PORT _0); This property
determine the index of framegrabber users would like to connect. Typically,
after assigning PortlID, invoking the method “CreateChannel’ to connect the
framegrabber specified by PortlD. The available options are as the following:
AXA PORT 0 0 in decimal
AXA _PORT_1 1 in decimal
AXA PORT 2 2 in decimal
AXA PORT_3 3 in decimal

TxAxaAcqColFmt AcqgColFmt (R/W,
Default=AXA_ACQCOLFMT_GREYLEVEL, 0 in decimal); This
property determine the color format of connected camera. The available
options are as the following:
AXA ACQCOLFMT_GREYLEVEL 0 indecimal
AXA ACQCOLFMT_RGB24 1 in decimal

TxAxaVideoFmt VideoFmt (R/W,
Default=AXA_VIDEOFMT_FULL_NTSC, 0 in decimal); This property
determine the video sync format of connected camera. The available options
are as the following:

AXA_VIDEOFMT_FULL_NTSC 0 in decimal

AXA VIDEOFMT_FULL_PAL 1indecimal

AXA_VIDEOFMT_CIF_NTSC 2indecimal

AXA VIDEOFMT_CIF_PAL 3 in decimal

int GrabCount (R/W, Default=0); This property determine the number of
frames need to acquire. Vision framework control ALTAIR series
framegrabbers by two properties “GrabCount”~”ChannelState”” mainly. The
property ”ChannelState” controls the operation mode of framegrabber. There
are two operation modes of framegrabber available “ACTIVE”-"IDLE”. See
the property “ChannelState” for details. “GrabCount” will be decreased by
1 when each acquisition is finished. When “GrabCount becomes zero,
framegrabber stop acquiring although the ”ChannelState” is still in
“ACTIVE” mode. It mean acquires image infinitely if “GrabCount” is -1
and ”ChannelState” is in “ACTIVE” mode which is so-called “Live
Image”.

int FrameRate (R/W, Default=30); This property determine the data output
rate (so-called frame rate) of the framegrabber.

bool IsPortCreated (Read Only); Read this property to determine whether
the framegrabber is connected by AxAltair component or not.

59

ALTAIR SERIES

TxAxaChannelState ChannelState (R/W,
Default=AXA_CHANNELSTATE_IDLE, 0 in decimal); This property
determine the operation mode of the channel. This property should be
configured combined with the property “GrabCount”. See the property
“GrabCount” for the detail. The available options are the followings:
AXA _CHANNELSTATE_IDLE 0 in decimal
AXA_CHANNELSTATE_ACTIVE 1indecimal

int Brightness (R/W, Default=128); This property determine the brightness
of video amplifier in ALTAIR framegrabber. It ranges from 0 to 255 and the
neutral value is 128.

int Contrast (R/W, Default=108); This property determine the contrast of
video amplifier in ALTAIR framegrabber. It ranges from 0 to 255 and the
neutral value is 108.

int Hue (R/W, Default=0); This property determine the hue of ALTAIR
framegrabber. It ranges 0 to 255.

int ChromaU (R/W, Default=127); This property determine the U gain of
chroma in ALTAIR framegrabber. It ranges from 0 to 255 and the neutral
value is 127.

int ChromaV (R/W, Default=127); This property determine the V gain of
chroma in ALTAIR framegrabber. It ranges from 0 to 255 and the neutral
value is 127.

int ImageWidth (Read Only); Read this property to determine the width of
image in pixels that the framegrabber output. This property will be changed
according to the property “VideoFmt”.

int ImageHeight (Read Only); Read this property to determine the height of
image in pixels that the framegrabber output. This property will be changed
according to the property “VideoFmt”.

7-3-2 Methods

bool CreateChannel() ; Connect to ALTAIR framegrabber. This method
should be invoked before any attempts to control ALTAIR framegrabber.
Before invoking this method, users should configure PortID ~ VideoFmt ~
AcqColorFmt properties to appropriate values. Return value TRUE means
the vision framework connects framegrabber successfully. Return value
FALSE means the vision framework connects framegrabber failed and users
should check the hardware and device driver installation to shoot where the
trouble is.

bool DestroyChannel() ; Disconnect from ALTAIR framegrabber. This

60

ALTAIR SERIES

method should be invoked if the connected is not used anymore. Return value
TRUE means the vision framework disconnects from framegrabber
successfully. Return value FALSE means the vision framework disconnects
from framegrabber failed and users should check the hardware and device
driver installation to shoot where the trouble is.

void Live() ; Invoke this method makes vision framework enter “Live
Image” mode. At this time, the framegrabber acquires image infinitely and
assert two successive events “OnSurfaceFilled” ~ ”OnCustomDraw” to
notify user to complete necessary tasks. Invoking this method is equivalent to
the following code fragment:

AxAltairl.GrabCount = -1
Ax Altairl.ChannelState = AXA _CHANNELSTATE_ACTIVE

void Freeze() ; Invoke this method makes vision framework enter “Freeze
Image” mode. At this time, the framegrabber stop acquiring image. Invoking
this method is equivalent to the following code fragment:

Ax Altairl.ChannelState = AXA_CHANNELSTATE_IDLE
Ax Altairl. GrabCount =0

void Snap(int nFrames) ; Invoke this method makes vision framework
enter “Snap Image” mode. At this time, the framegrabber acquires nFrames
Images and assert two successive events

“OnSurfaceFilled” ~ ”OnCustomDraw’ to notify user to complete necessary
tasks for each acquired image. Invoking this method is equivalent to the
following code fragment:

Ax Altairl.ChannelState = AXA_CHANNELSTATE_IDLE
AxAltairl.GrabCount=1
Ax Altairl.ChannelState = AXA _CHANNELSTATE_ACTIVE

void SaveFile(String FileName , TxAxImageFileFormat FileFormat) ;
Invoke this method makes AxAltair component saves the current frame buffer
to image file with FileName as name and FileFormat as file format. The
available options for FileFormat is the following:
AX_IMAGE_FILE_TYPE_GREYLEVEL_BMP:

Greylevel in BMP format
AX_IMAGE_FILE_TYPE_FULLCOLOR_BMP: True
color in BMP format
AX_IMAGE_FILE_TYPE_GREYLEVEL_JPG:

Greylevel in JPEG format
AX_IMAGE_FILE_TYPE_FULLCOLOR_JPG: True
color in JPEG format

long DrawSurface (Long SurfaceHandle , Long hDC , float ZoomX,
float ZoomY , int PanX , int PanY) ; Draw the image specified by
SurfaceHandle onto the specified canvas. Returned value means the number
of scanlines actually drawed.

61

ALTAIR SERIES

long GetlmagePtr (Long SurfaceHandle , int X, int Y) ; Get the physical
memory address of the image data specified by SurfaceHandle and starting
position (X, Y). Returned value is the physical memory address of the
specified image data at the starting position (X, Y). Users can cast the
returned value to a byte pointer and thus can be a data source for the coming
procession.

TxAxaloState GetloState(int Port); ALTAIR framegrabber support 4 In / 4
Out digital 10. Invoke this method to read the current state of input or output
port. Port determine the index of port users would like to read which ranges
from 0 to 7.The returned value determines the state of the specified port. The
state are the followings:

AXA 10 _STATE LOW 0 in decimal
AXA 10 _STATE HIGH 1 in decimal
AXA 10 STATE NULL 2 in decimal

“AXA 10 _STATE_NULL” indicates the failure of execution of the method.

void SetloState(int Port, TxAxaloState loState); Invoke this method to
write the state of the specified output port. Port determines the port index
users specified. loState determines the state of the port to change. The
available options are listed as above.

float GetFocusRatio (Long SurfaceHandle) ; Estimate the focus ratio of
the image specified by SurfaceHandle. This is a very nice feature that help
users to design an auto-focus system without any other software or hardware.
When the focus is reached, this focus ratio will reach a local maximum thus
users can refer to this ratio to control the motion device and search the best
focus easily. The algorithm of this focus ratio is very fast and robust so that
the estimation is almost real-time and will not low down the frame rate at all.

7-3-3 Events

void OnSurfaceFilled (Long SurfaceHandle) ; The acquisition flow is
fully controlled by AxAltair component and AxAltair component will assert
two successive events “OnSurfaceFilled” ~ ”OnCustomDraw” to notify user
to do something like “Process the underlying image data” ~ “Draw the
underlying image or somewhat” whenever a frame buffer (or so-called
surface) is filled with new image data just acquired by framegrabber. Here,
users can write some codes for image processing or somewhat.

void OnSurfaceDraw (Long SurfaceHandle) ; Same as above. Here, users
can write some codes for drawing image or somewhat..

void OnHardwareTrigger (Long loStates) ; The AxAltair component
assert this event just after the framegrabber received a valid hardware trigger
from digital input line. loStates means the current state of 1/0O lines.

62

ALTAIR SERIES

7-4 Programming Interface of AxCanvas Component

7-4-1 Properties

int CanvasWidth (R/W, Default=256); This property determines the width
of drawing area in AxCanvas compoment which in unit of pixels. If the width
or height of drawing area is larger than the width or height of AxCanvas
component, horizontal or vertical scroll bar will appear automatically to help
users to view the whole drawing area.

int CanvasHeight (R/W, Default=256); This property determines the height
of drawing area in AxCanvas compoment which in unit of pixels. If the width
or height of drawing area is larger than the width or height of AxCanvas
component, horizontal or vertical scroll bar will appear automatically to help
users to view the whole drawing area.

long hDC (Read Only); This property determines the handle of device
context of the drawing area in AxCanvas compoment. If users need to draw
some primitives, the hDC is needed for drawing. Because of the double
buffered mechanism in AxCanvas, users need to “refresh” AxCanvas
component manually by invoking the method “RefreshCanvas” to make the
drawing area keep updated.

TxAxColor PenColor (R/W, Default=AX_COLOR_WHITE, 20 in
decimal); This property determines the pen color of the drawing area in
AxCanvas component. Note that users should configure pen color by this
property instead of using windows API to avoid GDI confliction. The
available options are as the following :

AX_COLOR_AQUA 0 in decimal
AX_COLOR_BLACK 1 in decimal
AX _COLOR_BLUE 2 in decimal
AX_COLOR_CREAM 3 in decimal
AX_COLOR_DKGRAY 4 in decimal
AX_COLOR_FUCHSIA 5 in decimal
AX_COLOR_GRAY 6 in decimal
AX_COLOR_GREEN 7 in decimal
AX COLOR_LIME 8 in decimal
AX COLOR_LTGRAY 9 in decimal

AX _COLOR_MAROON 10 in decimal

63

ALTAIR SERIES

AX_COLOR_MEDGRAY 11 in decimal
AX_COLOR_MONEYGREEN 12 in decimal

AX_COLOR_NAVY 13 in decimal
AX_COLOR_OLIVE 14 in decimal
AX_COLOR_PURPLE 15 in decimal
AX_COLOR_RED 16 in decimal
AX_COLOR_SILVER 17 in decimal
AX_COLOR_SKYBLUE 18 in decimal
AX_COLOR_TEAL 19 in decimal
AX_COLOR_WHITE 20 in decimal
AX_COLOR_YELLOW 21 in decimal
AX_COLOR_OTHER 22 in decimal

Note that if PenColor =AX_COLOR_OTHER, users can customize pen
color by assigning color constant to the property “CustomPenColor”. See the
next property for more details.

long CustomPenColor (R/W, Default= 16777215); This property determines
the customized pen color when PenColor =AX_COLOR_OTHER. The color
value is encoded by the following method : 0XOOBBGGRR in hexdecimal.
Each color component have 8 bits (256 levels) to quantize. For example, pure
red can be expressed as 0x000000FF = 255 ; pure green can be expressed as
0x0000FFQ0 = 65280 ; pure blue can be expressed as 0Ox00FF0000 =
16711680.

int PenWidth (R/W, Default=1); This property determines the width of the
pen of drawing area in AxCanvas component. Note that users should
configure pen width by this property instead of using windows API to
avoid confliction.

TxAxPenStyle PenStyle (R/W, Default= AX_PENSTYLE_SOLID, 0 in
decimal); This property determines the pen style of the drawing area in
AxCanvas component. Note that users should configure pen style by this
property instead of using windows API to avoid GDI confliction. The
available options are as the following :

AX_PENSTYLE_SOLID 0 in decimal
AX_PENSTYLE_DASH 1 in decimal
AX_PENSTYLE_DOT 2 in decimal

AX_PENSTYLE_DASHDOT 3 in decimal

64

ALTAIR SERIES

AX_PENSTYLE_DASHDOTDOT 4 in decimal
AX_PENSTYLE_CLEAR 6 in decimal
AX_PENSTYLE_INSIDEFRAME 7 in decimal

TxAxColor FontColor (R/W, Default=AX_COLOR_BLACK, 1in
decimal); This property determines the font color of the drawing area in
AxCanvas component. Note that users should configure font color by this
property instead of using windows API to avoid GDI confliction. The
available options are as the following :

AX_COLOR_AQUA 0 in decimal
AX_COLOR_BLACK 1 in decimal
AX_COLOR_BLUE 2 in decimal
AX_COLOR_CREAM 3 in decimal
AX_COLOR_DKGRAY 4 in decimal
AX_COLOR_FUCHSIA 5 in decimal
AX_COLOR_GRAY 6 in decimal
AX_COLOR_GREEN 7 in decimal
AX_COLOR_LIME 8 in decimal
AX_COLOR_LTGRAY 9 in decimal
AX_COLOR_MAROON 10 in decimal

AX_COLOR_MEDGRAY 11 in decimal
AX_COLOR_MONEYGREEN 12 in decimal

AX_COLOR_NAVY 13 in decimal
AX_COLOR_OLIVE 14 in decimal
AX_COLOR_PURPLE 15 in decimal
AX _COLOR_RED 16 in decimal
AX_COLOR_SILVER 17 in decimal
AX_COLOR_SKYBLUE 18 in decimal
AX _COLOR_TEAL 19 in decimal
AX_COLOR_WHITE 20 in decimal
AX_COLOR_YELLOW 21 in decimal
AX_COLOR_OTHER 22 in decimal

Note that if FontColor =AX_COLOR_OTHER, users can customize font
color by assigning color constant to the property “CustomFontColor”. See
the next property for more details.

long CustomFontColor (R/W, Default= 16777215); This property
determines the customized font color when FontColor

65

ALTAIR SERIES

=AX_COLOR_OTHER. The color value is encoded by the following
method : 0OXOOBBGGRR in hexdecimal. Each color component have 8 bits
(256 levels) to quantize. For example, pure red can be expressed as
0x000000FF = 255 ; pure green can be expressed as 0x0000FF00 = 65280 ;
pure blue can be expressed as 0x00FF0000 = 16711680.

TxAxColor BrushColor (R/W, Default=AX_COLOR_WHITE, 20 in
decimal); This property determines the brush color of the drawing area in
AxCanvas component. Note that users should configure brush color by this
property instead of using windows API to avoid GDI confliction. The

available options are as the following :
AX_COLOR_AQUA
AX_COLOR_BLACK
AX_COLOR_BLUE
AX_COLOR_CREAM
AX_COLOR_DKGRAY
AX_COLOR_FUCHSIA
AX_COLOR_GRAY
AX_COLOR_GREEN
AX_COLOR_LIME
AX_COLOR_LTGRAY
AX_COLOR_MAROON
AX_COLOR_MEDGRAY

0 in decimal
1 in decimal
2 in decimal
3 in decimal
4 in decimal
5 in decimal
6 in decimal
7 in decimal
8 in decimal
9 in decimal
10 in decimal
11 in decimal

AX_COLOR_MONEYGREEN 12 in decimal

AX_COLOR_NAVY
AX_COLOR_OLIVE
AX_COLOR_PURPLE
AX_COLOR_RED
AX_COLOR_SILVER
AX_COLOR_SKYBLUE
AX_COLOR_TEAL
AX_COLOR_WHITE
AX_COLOR_YELLOW
AX_COLOR_OTHER

13 in decimal
14 in decimal
15 in decimal
16 in decimal
17 in decimal
18 in decimal
19 in decimal
20 in decimal
21 in decimal
22 in decimal

Note that if BrushColor =AX_COLOR_OTHER, users can customize font
color by assigning color constant to the property “CustomBrushColor”. See

the next property for more details.

66

ALTAIR SERIES

long CustomBrushColor (R/W, Default=16777215); This property

determines the customized brush color when BrushColor
=AX_COLOR_OTHER. The color value is encoded by the following
method : 0OXOOBBGGRR in hexdecimal. Each color component have 8 bits
(256 levels) to quantize. For example, pure red can be expressed as
0x000000FF = 255 ; pure green can be expressed as 0x0000FF00 = 65280 ;
pure blue can be expressed as 0x00FF0000 = 16711680.

TxAxBrushStyle BrushStyle (R/W, Default= AX_BRUSHSTYLE_SOLID,
0 in decimal); This property determines the brush style of the drawing area in
AxCanvas component. Note that users should configure brush style by this
property instead of using windows API to avoid GDI confliction. The
available options are as the following :

AX_BRUSHSTYLE_SOLID 0 in decimal
AX_BRUSHSTYLE_CROSS 1 in decimal
AX_BRUSHSTYLE_CLEAR 2 in decimal

AX_BRUSHSTYLE_DIAGCROSS 3 in decimal
AX_BRUSHSTYLE_BDIAGONAL 4 in decimal
AX_BRUSHSTYLE_FDIAGONAL 5 in decimal
AX_BRUSHSTYLE_HORIZONTAL 6 in decimal
AX_BRUSHSTYLE_VERTICAL 7 in decimal

7-4-2 Methods

void DrawText(String Text , int X, int Y, float ZoomX , float ZoomY , int
PanX, PanY) ; Draw the specified text in drawing area at (X,Y) location
with specified zooming and panning conditions. Because of the double
buffered mechanism in AxCanvas, users need to “refresh” AxCanvas
component manually by invoking the method “RefreshCanvas” to make the
drawing area keep updated.

void DrawLine(int SX, int SY, int DX, int DY, float ZoomX , float
ZoomY , int PanX , PanY) ; Draw the specified line with starting point
(SX,SY) and ending point (DX,DY) in drawing area with specified zooming
and panning conditions. Because of the double buffered mechanism in
AxCanvas, users need to “refresh” AxCanvas component manually by
invoking the method “RefreshCanvas’ to make the drawing area keep
updated.

67

ALTAIR SERIES

void DrawSurface(Long SurfaceHandle , float ZoomX , float ZoomY , int
PanX , PanY) ; Draw the specified image (specified by parameter
SurfaceHandle) in drawing area with specified zooming and panning
conditions. Because of the double buffered mechanism in AxCanvas, users
need to “refresh” AxCanvas component manually by invoking the method
“RefreshCanvas” to make the drawing area keep updated.

void RefreshCanvas() ; Make the drawing area keep updated. Normally, users
can invoke this method once after all the drawing routines finished to keep the
best rendering performance. For example,

void Refreshimage ()

{
/l Draw image in AxCanvas
AxCanvasl->DrawSurface (SurfaceHandle ,1,1,0,0);
[/l Draw other primitives in AxCanvas
DrawOtherPrimitivesRoutine (AxCanvasl->hDC) ;
Il Finally, refresh AxCanvas to render the result

AxCanvasl->RefreshCanvas();

7-4-3 Events

void OnCanvasMouseDown (int X, int Y') ; AxCanvas component assert
this event when users click within the region of drawing area. The X and Y
parameters indicates the position users clicked in the unit of pixel.

void OnCanvasMouseMove (int X, int Y) ; AxCanvas component assert
this event when users move cursor within the region of drawing area. The X
and Y parameters indicates the position users moving in the unit of pixel.

void OnCanvasMouseUp (int X, intY) ; AxCanvas component assert this
event when users release the mouse button within the region of drawing area.
The X and Y parameters indicates the position users released in the unit of
pixel.

68

